Dopamine modulation of phasing of activity in a rhythmic motor network: contribution of synaptic and intrinsic modulatory actions.

نویسندگان

  • Bruce R Johnson
  • Lauren R Schneider
  • Farzan Nadim
  • Ronald M Harris-Warrick
چکیده

The phasing of neuronal activity in a rhythmic motor network is determined by a neuron's intrinsic firing properties and synaptic inputs; these could vary in their relative importance under different modulatory conditions. In the lobster pyloric network, the firing of eight follower pyloric (PY) neurons is shaped by their intrinsic rebound after pacemaker inhibition and by synaptic input from the lateral pyloric (LP) neuron, which inhibits all PY neurons and is electrically coupled to a subset of them. Under control conditions, LP inhibition is weak and has little influence on PY firing. We examined modulation that could theoretically enhance the LP's synaptic contribution to PY firing. We measured the effects of dopamine (DA) on LP-->PY synapses, driving the LP neuron with trains of realistic waveforms constructed from prerecorded control and DA LP oscillations, which differed in shape and duration. Under control conditions, chemical inhibition underwent severe depression and disappeared; in the mixed synapses, electrical coupling dominated. Switching between control and DA LP waveforms (with or without DA present) caused only subtle changes in synaptic transmission. DA markedly enhanced synaptic inhibition, reduced synaptic depression and weakened electrical coupling, reversing the sign of the mixed synapses. Despite this, removal of the LP from the intact network still had only weak effects on PY firing. DA also enhances PY intrinsic rebound properties, which still control the onset of PY firing. Thus in a rhythmic network, the functional importance of synaptic modulation can only be understood in the context of parallel modulation of intrinsic properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network exci...

متن کامل

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

Dopaminergic modulation of spinal neuronal excitability.

It is well recognized that dopamine (DA) can modulate spinal networks and reflexes. DA fibers and receptors are present in the spinal cord, and evidence for DA release within the spinal cord has been published. A critical gap is the lack of data regarding dopaminergic modulation of intrinsic and synaptic properties of motoneurons and ventral interneurons in the mammalian spinal cord. In this pa...

متن کامل

Octopamine promotes rhythmicity but not synchrony in a bilateral pair of bursting motor neurons in the feeding circuit of Aplysia.

Octopamine-like immunoreactivity was localized to a limited number (<40) of neurons in the Aplysia central nervous system, including three neurons in the paired buccal ganglia (BG) that control feeding movements. Application of octopamine (OA) to the BG circuit produced concentration-dependent (10(-8)-10(-4) mol l(-1)) modulatory actions on the spontaneous burst activity of the bilaterally pair...

متن کامل

Cellular, synaptic, network, and modulatory mechanisms involved in rhythm generation.

The membrane properties and the synaptic interactions of individual neurons, as well as the interactions between neuronal networks, all contribute to the formation of the complex patterns of activity that underlie rhythmic motor patterns and slow-wave sleep rhythms. These properties and interactions are potential points of modulation for further refining network output. Recent work illustrates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 5  شماره 

صفحات  -

تاریخ انتشار 2005